Island County Hydrogeology

We Are Here

Camano Island Aquifers Your Groundwater

Doug Kelly Hydrogeologist Island County Public Health

Definitions

Land Suface

An Aquitard is a less permeable geologic formation. Aquitards can pass water, but at a lower rate than an Aquifer

Sea Level

Saline Sea Water

In summary, the freshwater / saltwater interface is a natural phenomenon which has always been in existence. The position of this interface is not fixed, but moves in response to changes in the flow and pressure in the aquifer.

Groundwater Recharge

Saline Sea Water Zone of Diffusion

Groundwater Flow (Equilibruim)

Diffusion and Dispersion

Darcy's Law for Flow Through Porous Media

$$Q = -KA\frac{h}{L}$$

Where: Q = Flow Rate A = Cross-Sectional Area h = Pressure Differential L = Length K = Hydraulic Conductivity

Darcy's Law and Hydraulic Conductivity

Aquifers

Aquitards

Darcy's Law $Q = -\mathbf{K}A\frac{\mathbf{h}}{\mathbf{L}}$

Hydraulic Conductivity (**K**) of a geologic formation depends on a number of factors including:

- Grain Size (coarser is better)
- Grain Shape (smooth is better)
- Grain Size Distribution (well sorted is better)
- Porosity (more is better)

Hydraulic Conductivity has dimensions of length per unit time such as Centimeters per Second or Feet per Day.

Some Examples of Hydraulic Conductivity K (cm/s) 1x10 Sand Sand -2 Clear -3 Silty Oess -5 Silt -6 Glacial -8 -9

-10

Modes of Glacial Deposition Sub-glacial / Ice Contacts Deposits • Little or no sorting • Highly compacted by overlying ice • Produces glacial till or hardpan Meltwater / Outwash Deposits Sorted Little or no compaction • Produces Sand, Gravel, Silt and Clay

Geologic History – Island County Washington

Erathem	System	Series	GEOLOGIC CLIMATE UNITS		STRATIGRAPHIC UNITS		AQUIFERS AND CONFINING UNITS	
	1. Sel		8 ×	Everson	Glaci of	omarine Drift Everson Age	12,500 Years Ago	
CENOZOIC	QUATERNARY	PLEISTOCENE	Fraser		Partridge Gravel Easterbrook (1968)		Aquifer E	
			Glaciation	Vashon Stade	VASHON DRIFT	Till and Associated Drift of Vashon Age	Confining Unit E	
						Esperance Sand Member	Aquifer D	
			Olympia Interglaciation		Quadra Formation (Canadian usage)		27,000 Years Ago Confining Unit D >40,000 Years Ago Aquifer C Confining Unit C	
			Possession Glaciation		Possession Drift			
			Whidbey Interglaciation		Whidbey Formation			
			Double Bluff Glaciation		Double Bluff Drift		?	

Island County

Water Resource Management Efforts

- 1979-83 USGS Water Resource Study
- 1982EPA Sole Source Aquifer Designation
- 1985 Critical Water Supply Service Area
- 1989 DOH / ICHD Saltwater Intrusion Policy
- 1990 Coordinated Water System Plan
- 1990 MOU Island County / DOE Water Resource Planning, Management and Permitting
- 1990 ICC 13.03A Water System & Fireflow Requirements
 1990 ICC 8.09 POTABLE WATER SOURCE AND
 - SUPPLY
- 1991 Groundwater Management Plan
- 1995 Nitrate Study
- 1996 Island County Hydrogeologist
- 1997-2003 USGS Recharge Study
- 2001-2006 HB-2514 Watershed Planning (Phases I, II, III and IV)
- 2005 ICC 8.09.97 Critical Aquifer Recharge Area (CARA) Protection
- <u>2005</u> ICC 8.09.99 Seawater Intrusion Protection

Washington State Department of Health Island County Health Department Salt Water Intrusion Policy (Adopted 1989)

Healt

• Created "Risk Zones"

	Risk Category	Chloride (mg/L)
No.	Low	< 100
	Medium	100-200
	High	> 200

- Utilized a 1/2 Mile Radius Around "Impacted" Wells
- Applied to Expansion / Development of Public Water Systems
- Applied to Subdivision of Land Through Anti-Degradation
- Modified in 2002 to Apply to Individual Wells on Parcels Less than 1.5 Acres in Size

Adapted from PRISM Climate Group, Oregon State University

2015 Drought

ta from http://www.wrcc.dri.edu/cgi-bin/cliMAIN.pl?EVERETT,452675

Problems with Chloride as an Indicator

- Other Sources of Chloride (False Positives)
 - Very Hard Groundwater
 - Septic Systems
 - Connate (Old) Waters
 - Windblown Sea Spray
 - Irrigation Recharge
 - Well Disinfection –
 - Transient Response of Interface (False Negatives)

Cations K+Na

- Proposals are Evaluated Based Primarily on 24-Hour Aquifer Tests, Potential for Intrusion is <u>Not</u> (necessarily) <u>Determined</u>
- Lateral Intrusion May Take Years to Establish a New Equilibrium Position
- Lack of Prediction
- Lack of Confidence
 - Is Intrusion Looming Just Around the Corner?

Objectives

Place a well screen in the aquifer.

• The screen allows water into the well, while holding back the aquifer material (sand / gravel).

Install a well casing, to allow access for a pump etc.

Process

- Advance the casing until a suitable aquifer is penetrated.
- Place a well screen within the casing, adjacent to the aquifer.
- Pull the casing back, to expose the well screen to the aquifer formation.

Drill Rigs

 Two types of drill rigs are typically used for drilling small domestic supply wells in our area:

Cable Tool
 Air Rotary

Air Rotary

Formation is ground up
by a spinning drill bit
attached to the drill rig
by the drill stem.

- Cuttings are removed by highly pressurized air.
- Casing is advanced simultaneously with drilling.

Cable Tool

The formation is ground up by raising and lowering a heavy drill bit (on a cable)

Cuttings are removed by a bucket with a flap valve at the bottom known as a bailer

• Casing is advanced by attaching a flange to the bit, and pounding the casing downward.

Additional Components

- 1. Well Pump
- 2. Electrical Wiring
- 3. <u>Riser/Drop Pipe & Waterline</u>
- 4. Well Cap
- 5. Alternate Riser Configuration:
 - Pitless Adapter
- 6. Pressure Tank
- 7. Pump Control Circuit

Data Sources
Groundwater Chemical
Mater Well ReportWater Well ReportAnalysis

WATER WELL REPORT File Original with Department of Ecology Second Copy - Owner's Copy STATE OF WASHINGTON Third Copy - Daller's Copy Water Blo (1) OWNER: Name John Doe Address NW 10 SE (2) LOCATION OF WELL: County _____ ISLAND (2a) STREET ADDRESS OF WELL: (or nearest address) 234 Fifth Street TAX PARCEL NO. R-2 332 2-200 -3510 (3) PROPOSED USE: Comestic Industrial LI Municipal (10) WELL LO rrigeling Test Well C Other Formation: Des C DeWete the kind and n one entry for ea TYPE OF WORK: Owner's number of well (if more than one) New Well Method Deepened Cable L: Bored C C Jetted Reconditio GRAVEL Decommission (5) DIMENSIONS: <u>ئ</u> 6 K Diameter of well feet. Depth of completed well_ 1/2/ ŠAND Drilled 166 WA CONSTRUCTION DETAILS Cealing Installed: Duans. from ______ tt. to ______ 4 Liner installed Diam. from Threaded Diam. from ft. to 🗆 Yes 🕍 Perforatione: Type of perforator used ____ SIZE of perforations in by WELL _perforations from _ Н. Ю. wen Screens: Xes No K-Ractocation 160 Menufacturer's Name COCK Model No. No <t Diam. Slot Size from ft, lo Material placed from ____ li to Surface seal: A Yes D No To what depth? 18+ Material used in seal BENTON ITE Type of water? ______ Method of seaking strata of PUMP: Manufacturer's Name (7) Туря: ____ Work Started Artesian water is controlled by _ WELL CONSTR (Cap, valva, etc.) I constructed WELL TESTS: Drawdown is amount water level is lowered below static level compliance v and the inform Was a pump test made? [] Yes (\$1, No | If yes, by whom?] Yield: _____gal./min_with ___ h. drawdown eiter Type or Print Yield: ____gal./min. with h. drawdown atter ha ft. drawdown aftar Yield: cel./min.with hn Recovery data (time taken as zero when pump turned off) (water lavel measured from Trainee Name well top to water level) Drillino Comp Water Leve (Signed) # Address / Date of test Beiler test / 0 get./min. with / 0 ft. drawdown after 3 hrs Contractor's Registration Airtest gal/min. with_ ft. drawdown after g.p.m. Dale Artesian flow Was a chemicel enalysis made? 🗆 Yes 🗶 No Temperature of water_ Ecology is an E accom

ECY 050-1-20 (11/98)

STATE OF WASHINGTON Daniel J. Evans, Governor
DEPARTMENT OF WATER RESOURCES H. MAURICE AHLQUIST, Director
Water Supply Bulletin No. 25

Part

PLEISTOCENE STRATIGRAPHY OF ISLAND COUNTY

DON J. EASTERBROOK

GROUND-WATER RESOURCES OF ISLAND COUNTY

HENRY W. ANDERSON, JR.

With a section on Quality of the Ground Water

By A. S. VAN DENBURGH

Part II prepared in cooperation with UNITED STATES GEOLOGICAL SURVEY Water Resources Division

1968

Ecology is an European contact the Water Resources Program at (360) 407-6600. The TDD number is (360) 407-5006.

Reference: 95-0583 Project: Goodhue-Nims Water System RMATION FOR INORGANIC CHEMICAL ANALYSIS						
Analyte		*MCL	Result	UNITS	SRL	Com
толу	Sb	0.006	<0.005	mg/L	0.005	Ye
nic	As	0.050	<0.01	mg/L	0.01	Ye
um	Ba	2.00	≪0.1	mg/L	0.1	Ye
rllium	Ве	0.004	<0.002	mg/L	0.002	Ye
mium	Cd	0.005	<0.002	mg/L	0.002	Ye
mium	Cr	0.10	<0.01	mg/L	0.01	Ye
per	Cu	1.3*	<0.02	mg/L	0.02	Ye
	Fe	0.30	6.25	mg/L	0.05	No
1	Pb	0.015*	0.008	mg/L	0.002	Ye
ganese	Mn	0.050	0.15	mg/L	0.01	No
sury	Hg	0.0020	<0.0005	mg/L	0.0005	Ye
el	Ni	0.10	<0.04	mg/L	0.04	Ye
nium	Se	0.050	0.012	mg/L	0.005	Ye
).	Ag	0.050	<0.010	mg/L	0.01	Ye
um	Na		14.0	mg/L	1.0	
llum	TI	0.002	<0.001	mg/L	0.001	Yes
	Źn	5.00	2.78	mg/L	0.05	Yes
ness			218	mg CaCO3/L	10	
lific Condu	ctance	700	495	μS	10	Yes
idity		1.0	0.9	NTU	0.1	Yes
r		15	>5	CU	5	Yes
ride	CI	250	<20	mg/L	20	Yes
lide	CN	0.20	<0.10	mg/L	0.10	Yes
ride	F	2.0	<0.5	mg/L	0.5	Yes
te-N	NO3-N	10.0	1.2	mg/L	0.5	Yes
e-N	NO2-N	1.0	<0.5	mg/L	0.5	Yes
ite	SO4	250	31	mg/L	10	Yes
Dissolved	Solids	500	NA	mg/L	150	

Analytical/Environmental Services

M. P. M. Contamination Level Federal Action Lines are 0.015 mpl. for Less and 1.3 mpl. for Copper SR. Specific Reporting Link, N. Not Analyzed: < - Team 20an

Data Storage and Analysis

- Microsoft Access Databases
- Graphical Analysis Tools
- OLE Link to Mapping, Geo-Statistics and Groundwater Flow Modeling
 - Electronic Data Transmission

Programs - Department of Natural Resources - Water Resources Advisory Committee -Water Resource Management Plan

WATER RESOURCE MANAGEMENT PLAN

Washington State Department of Ecology funded Island County to develop a Water Resource Management Plan, which was adopted by the Board of Island County Commissioners on June 20, 2005. A series of Topic Papers were drafted by the Island County Water Resource Advisory Committee. These Topic Papers were the basis of the Water Resource Management Plan, and can be found in Appendix F or Table B below.

After completion of the Water Resource Management Plan, Washington State Department of Ecology funded Island County to develop the <u>Water Resource Detailed Implementation Plan</u>. This working document was approved by the Water Resource Advisory Committee in December of 2006, and outlines specific watershed related projects.

Cover Page	BICC Resolution	Table of Contents
Acknowledgements	Water Resource Plan	CARA Map
Appendix A	Appendix B	Appendix C
Appendix D	Appendix E	Appendix F
Appendix G	Appendix H	Appendix I
Appendix J	Appendix K	Appendix L
Table B - Topic Papers		-
Seawater Intrusion	Groundwater Recharge	Water Rights
Exempt Wells	Streamflow and Aquatic Habitat	Water System Coordination
Water Supply Alternatives	Rainwater Catchment	Conservation
Data Collection and Management	Education and Outreach	

WRAC Topic Paper Topics

•

- Conservation
- Arsenic
- Education and Outreach
- Data Collection and Management
- Water Rights
- Water Supply Alternatives

- Rainwater Catchment
- Exempt Wells
- Streamflows and Aquatic Habitat
- Water System Coordination
- Seawater Intrusion
 - Groundwater Recharge

Groundwater Recharge

• Quantity: Maintaining adequate groundwater recharge rates through decreasing the impacts of surface modifications

• Quality: Managing surface contaminants to reduce the risk of percolation down into groundwater supplies

Groundwater Recharge / Quantity

Human activities can significantly reduce recharge rates. Percolation rates can be maintained/encouraged through using Low Impact Development (LID) methods such as:

- · Limiting the surface area of hard/impervious paved surfaces
- · Managing roof runoff and minimizing roof size, where possible
- Retaining surface water runoff in cisterns or other catchments
- · Keeping native vegetation on-site, minimize grading / compaction

These LID methods can mitigate the effects of hard/ impervious surfaces, allowing retained or collected rainwater to percolate into the ground on-site instead of running off to Puget Sound

Groundwater Recharge / Quality

- Road Runoff
- Septic Systems
- Agriculture (Nutrients and Chemicals
- Residential Lawn Chemicals
- Seawater Intrusion

Some aquifers have higher susceptibility to surficial contamination than others.

Depth to Water

10 Miles

Seawater Intrusion

(LOLL) =

tal Dissolved So

Cations

Anion

Milliequivalents Per Liter

- Other Sources of Chloride (False Positives)
 - Very Hard Groundwater
 - Septic Systems
 - Connate (Old) Waters
 - Windblown Sea Spray
 - Irrigation Recharge
 - Well Disinfection

Cation K+Na

- Lateral Intrusion May Take Years to Establish a New Equilibrium Position
- Lack of Prediction
- Lack of Confidence

Limitations of the Saltwater Intrusion Policy

Water Level Elevation and Seawater Intrusion

- Adequate aquifer pressure (above sea level) can prevent seawater intrusion
- Water level elevation can be used to assess risk for intrusion
- Create a screening / flagging tool, noRelation
 evaluation of any given projec

GW

Saline Groundwater

40H

 Additional data collection / an evaluate specific projects

Phase II Assessment

- Data Collected from Nearly 400 Wells / 2 per Mile²
- Depth to Water Measurements
- Computerized Data Loggers
- Water Sample \rightarrow Laboratory

Major Ion Analysis

 Survey Grade GPS to Determine Measuring Point Elevations

Water Level Elevations

- Low Water Level Elevation
 Near Shorelines
- Low WLE Clustered
- False Negatives -
- High WLE / Confidence
- Confidence?

Water Level Elevations

Water Level Elevations

Island County Revised Seawater Intrusion Risk Rating

Risk Category	Water Level Elevation ¹	Chloride Concentration ²
Low	Greater than 8.4	(Any)
Medium	Less than or Equal to 8.4	Less than 100
High	Less than or Equal to 8.4	Between 100 and 250
Very High	Less than or Equal to 8.4	Greater than 250

¹ Water Level Elevation in feet above Mean Sea Level (NAVD 88). ² Chloride Concentration in Milligrams per Liter

> Continue Use of ¹/₂ Mile Radius Circles Around <u>Both</u> Low-WLE and Elevated Chloride Wells

Application to Land Use Proposals

I.C.C. Chapter 8.09.099 Potable Water Source and Supply Modified to Include New Seawater Intrusion Protection Strategy

Effective June 21, 2005

LIDAR (LIght Distance And Ranging) is a relatively new technology that employs an airborne scanning laser rangefinder to produce accurate topographic surveys of unparalleled detail.

10-meter DEM from contours

III.

Contact Information

Douglas J. Kelly L.G., L.HG Island County Environmental Health (360) 679-7885 From Camano: 629-4522 D.Kelly@co.island.wa.us